AAPT Workshop - A Jigsaw Lesson for First-Order Logic Translations Using Identity Russell Marcus
 Department of Philosophy, Hamilton College
 rmarcus1@hamilton.edu
 August 1, 2010

Work Group: Only

I. Translation key:
a: Andy; d: Dwight; g: Angela; j: Jim; m: Michael; o: the Office; p: Pam; t: Toby $A x: x$ is an accountant; Mx: x is a regional manager; Rx: x is a raise; $\mathrm{Sx}: \mathrm{x}$ is a salesperson Dxy: x despises y ; Ixy: x is in y ; Lxy: x loves y
Gxyz: x would give y to z
II. Examine the translations below, which use the key in I.

1. Jim loves Pam.
Ljp
2. Jim only loves Pam.

$$
\operatorname{Ljp} \bullet(\mathrm{x})(\mathrm{Ljx} \supset \mathrm{x}=\mathrm{p})
$$

3. Only Andy and Dwight love Angela.

$$
\operatorname{Lag} \bullet \operatorname{Ldg} \bullet(x)[\operatorname{Lxg} \supset(x=a \vee x=d)]
$$

4. There is only one accountant in the office.

$$
(\exists \mathrm{x})\{\mathrm{Ax} \bullet \operatorname{Ixo} \bullet(\mathrm{y})[(\mathrm{Ay} \bullet \mathrm{Iyo}) \supset \mathrm{y}=\mathrm{x}]\}
$$

5. Only Michael would give Angela a raise.

$$
(\exists \mathrm{x})(\mathrm{Rx} \bullet \mathrm{Gmxg}) \bullet(\mathrm{x})[\mathrm{Rx} \supset(\mathrm{y})(\mathrm{Gyxg} \supset \mathrm{y}=\mathrm{m})]
$$

III. Try these, using the key in I.
6. Michael is the only regional manager.
7. There is only one salesperson who despises Toby.
8. Only Dwight and Jim are salespeople in the office.

```
AAPT Workshop - A Jigsaw Lesson for First-Order Logic Translations Using Identity
                        Russell Marcus
    Department of Philosophy, Hamilton College
    rmarcus1@hamilton.edu
                        August 1, 2010
    Work Group: Except
```

I. Translation key:
c: Creed; g: Angela; m: Michael; n: Jan; p: Pam; o: the Office; r: Scranton; s: Stanley; t: Toby
Ax: x is an accountant; Dx: x is a drug test; Ex: x is an employee; $\mathrm{Hx}: \mathrm{x}$ is happy; Px: x is a person; Sx : x is a salesperson; Tx: x is a product
Ixy: x is in y ; Kxy: x likes y ; Lxy: x loves y ; Pxy: x passed y ; Rxy: x resides in y ; Sxy: x sells y; Txy: x tolerates y
Gxyz: x would give y to z
II. Examine the translations below, which use the key in I.

1. Everyone loves Pam.

$$
(x)(P x \supset \operatorname{Lxp})
$$

2. Everyone except Angela loves Pam.

$$
\mathrm{Pa} \bullet \sim \mathrm{Lap} \bullet(\mathrm{x})[(\mathrm{Px} \bullet \mathrm{x} \neq \mathrm{a}) \supset \mathrm{Lxp}]
$$

3. Someone likes all employees except Toby.

$$
\mathrm{Et} \bullet(\exists \mathrm{x})\{\mathrm{Px} \bullet \sim \mathrm{Kxt} \bullet(\mathrm{y})[(\mathrm{Ey} \bullet \mathrm{y} \neq \mathrm{t}) \supset \mathrm{Kxy}]\}
$$

4. Everyone in the office except Pam resides in Scranton.

$$
\mathrm{Pp} \bullet \mathrm{Ipo} \bullet \sim \mathrm{Vps} \bullet(\mathrm{x})[(\mathrm{Px} \bullet \mathrm{Ixo} \bullet \mathrm{x} \neq \mathrm{p}) \supset \mathrm{Vxs}]
$$

5. Everyone but Creed passed a drug test.

$$
\mathrm{Pc} \bullet(\mathrm{x})(\mathrm{Dx} \supset \sim \mathrm{Pcx}) \bullet(\mathrm{x})[(\mathrm{Px} \bullet \mathrm{x} \neq \mathrm{c}) \supset(\exists \mathrm{y})(\mathrm{Dy} \bullet \mathrm{Pxy})]
$$

III. Try these, using the key in I.
6. All employees are happy except Stanley.
7. No one except Michael tolerates Jan.
8. Some products are sold by all employees except Michael.

```
AAPT Workshop - A Jigsaw Lesson for First-Order Logic Translations Using Identity
                        Russell Marcus
                        Department of Philosophy, Hamilton College
                        rmarcus1@hamilton.edu
                        August 1,2010
```


Work Group: Superlatives

I. Translation key:
c: Creed; d: Dwight; j: Jim; m: Michael; n: Jan; p: Pam; r: the Scranton branch; u: the Utica branch
$A x: x$ is an accountant; $B x: x$ is a branch; Ex: x is an employee; $\mathrm{Ox}: \mathrm{x}$ is an office; $\mathrm{Sx}: \mathrm{x}$ is a salesperson
Bxy: x is bigger than y ; Hxy: x has y ; Ixy: x is in y ; Mxy: x is smaller than $\mathrm{y} ;$ Nxy: x is nicer than y ; Zxy : x is lazier than y
Nxyz: x is nearer than y to z .
II. Examine the translations below, which use the key in I.

1. Jim is a nicer salesperson than Dwight.

$$
\mathrm{Sj} \bullet \mathrm{Sd} \bullet \mathrm{Njd}
$$

2. Jim is the nicest salesperson.

$$
\mathrm{Sj} \bullet(\mathrm{x})[(\mathrm{Sx} \bullet \mathrm{x} \neq \mathrm{j}) \supset \mathrm{Njx}]
$$

3. Utica is the smallest branch.

$$
\mathrm{Bu} \bullet(\mathrm{x})[(\mathrm{Bx} \bullet \mathrm{x} \neq \mathrm{u}) \supset \mathrm{Mux}]
$$

4. Creed is the laziest employee in the office.

$$
\text { Ec • Ico • (x) [(Ex • Ixo •x } \neq \mathrm{c}) \supset \mathrm{Zcx}]
$$

5. Michael is the employee who has the biggest office.

$$
\mathrm{Em} \bullet(\exists \mathrm{x})\{(\mathrm{Ox} \bullet \mathrm{Hmx}) \bullet(\mathrm{y})\{(\mathrm{Ey} \bullet \mathrm{y} \neq \mathrm{m}) \supset(\mathrm{z})[(\mathrm{Oz} \bullet \mathrm{Hyz}) \supset \mathrm{Bxz}]\}\}
$$

III. Try these, using the key in I.
6. Scranton is the biggest branch.
7. Utica is the nearest branch to the Scranton branch.
8. Some employee is the biggest accountant in the office.

```
AAPT Workshop - A Jigsaw Lesson for First-Order Logic Translations Using Identity
                        Russell Marcus
                        Department of Philosophy, Hamilton College
                        rmarcus1@hamilton.edu
                        August 1,2010
```


Work Group: At Least

I. Translation key:
$\mathrm{j}: \mathrm{Jim}$; o: the Office
$A x$: x is an accountant; Dx : x is a drug test; Ex: x is an employee; $\mathrm{Hx}: \mathrm{x}$ is happy; $\mathrm{Ix}: \mathrm{x}$ is in the office
Bxy: x is bigger than y ; Ixy: x is in y ; Pxy: x passed y ; Txy: x tolerates y
II. Examine the translations below, which use the key in I.

1. There is at least one accountant in the office.

$$
(\exists \mathrm{x})(\mathrm{Ax} \cdot \mathrm{Ixo})
$$

2. There are at least two accountants in the office.

$$
(\exists \mathrm{x})(\exists \mathrm{y})(\mathrm{Ax} \bullet \mathrm{Ixo} \bullet \text { Ay } \bullet \text { Iyo } \bullet \mathrm{x} \neq \mathrm{y})
$$

3. There are at least three accountants in the office.

$$
(\exists \mathrm{x})(\exists \mathrm{y})(\exists \mathrm{z})(\mathrm{Ax} \bullet \mathrm{Ixo} \bullet \mathrm{Ay} \bullet \operatorname{Iyo} \bullet \mathrm{Az} \bullet \operatorname{Izo} \bullet \mathrm{x} \neq \mathrm{y} \bullet \mathrm{x} \neq \mathrm{z} \bullet \mathrm{y} \neq \mathrm{z})
$$

4. There are at least two happy employees who tolerate each other.

$$
(\exists \mathrm{x})(\exists \mathrm{y})(\mathrm{Hx} \bullet \mathrm{Ex} \bullet \mathrm{Hy} \bullet \mathrm{Ey} \bullet \mathrm{x} \neq \mathrm{y} \bullet \mathrm{Txy} \bullet \mathrm{Tyx})
$$

5. At least three accountants passed their drug tests.

$$
\begin{aligned}
& (\exists \mathrm{x})(\exists \mathrm{y})(\exists \mathrm{z})[\mathrm{Ax} \bullet \mathrm{Ay} \bullet \mathrm{Az} \bullet \mathrm{x} \neq \mathrm{y} \bullet \mathrm{x} \neq \mathrm{z} \neq \mathrm{y} \neq \mathrm{z} \bullet(\exists \mathrm{w})(\mathrm{Dw} \bullet \mathrm{Pxw}) \bullet(\exists \mathrm{w})(\mathrm{Dw} \bullet \mathrm{Pyw}) \bullet \\
& (\exists \mathrm{w})(\mathrm{Dw} \bullet \mathrm{Pzw})]
\end{aligned}
$$

III. Try these, using the key in I.
6. There are at least two employees bigger than Jim.
7. There are at least three employees bigger than Jim.
8. There are at least four accountants in the office.

```
AAPT Workshop - A Jigsaw Lesson for First-Order Logic Translations Using Identity
                    Russell Marcus
    Department of Philosophy, Hamilton College
    rmarcus1@hamilton.edu
                        August 1, 2010
                        Work Group: At Most
```

I. Translation key:
a: Andy; d: Dwight; g: Angela; m: Michael; o: the Office
$A x$: x is an accountant; Ex: x is an employee; $M x$: x is a regional manager; Px: x is a person $A x y$: x is y 's assistant; Bxy: x is bigger than $y ; H x y: ~ x$ has y; Ixy: x is in $y ; K x y: x$ likes y

Note: 'At most' statements make no existential commitments.
II. Examine the translations below, which use the key in I.

1. At most one person is Michael's assistant.

$$
(\mathrm{x})(\mathrm{y})[(\mathrm{Px} \bullet \mathrm{Axm} \bullet \mathrm{Py} \bullet \mathrm{Aym}) \supset \mathrm{x}=\mathrm{y}]
$$

2. At most two employees are accountants.

$$
(\mathrm{x})(\mathrm{y})(\mathrm{z})[(\mathrm{Ex} \cdot \mathrm{Ax} \cdot \mathrm{Ey} \cdot \mathrm{Ay} \cdot \mathrm{Ez} \cdot \mathrm{Az}) \supset(\mathrm{x}=\mathrm{y} \vee \mathrm{x}=\mathrm{z} \vee \mathrm{y}=\mathrm{z})]
$$

3. At most two people are Michael's assistants.

$$
(\mathrm{x})(\mathrm{y})(\mathrm{z})[(\mathrm{Px} \bullet \mathrm{Axm} \bullet \mathrm{Py} \bullet \mathrm{Aym} \bullet \mathrm{Pz} \bullet \mathrm{Azm}) \supset(\mathrm{x}=\mathrm{y} \vee \mathrm{x}=\mathrm{z} \vee \mathrm{y}=\mathrm{z})]
$$

4. There is at most one accountant in the office bigger than Dwight.

$$
(\mathrm{x})(\mathrm{y})[(\mathrm{Ax} \bullet \mathrm{Ixo} \bullet \mathrm{Bxd} \bullet \text { Ay } \bullet \text { Iyo } \bullet \mathrm{Byd}) \supset \mathrm{x}=\mathrm{y}]
$$

5. At most two regional managers have employees bigger than Andy.
```
\((\mathrm{x})(\mathrm{y})(\mathrm{z})\{[\mathrm{Mx} \bullet(\exists \mathrm{w})(\mathrm{Ew} \bullet \mathrm{Hxw} \bullet \mathrm{Bwa}) \bullet \mathrm{My} \bullet(\exists \mathrm{w})(\mathrm{Ew} \bullet \mathrm{Hyw} \bullet \mathrm{Bwa}) \cdot \mathrm{Mz} \bullet(\exists \mathrm{w})(\mathrm{Ew}\)
    - Hzw • Bwa \()\) ] \(\supset(x=y \vee x=z \vee y=z)\}\)
```

III. Try these, using the key in I.
6. There is at most one accountant in the office.
7. There are at most three accountants in the office.
8. Some people like Angela, but at most two.

AAPT Workshop - A Jigsaw Lesson for First-Order Logic Translations Using Identity
 Russell Marcus
 Department of Philosophy, Hamilton College
 rmarcus1@hamilton.edu

August 1, 2010
Solutions to the 'Try these' examples

Translation key for all problems on all five worksheets:
a: Andy; c: Creed; d: Dwight; g: Angela; j: Jim; m: Michael; n: Jan; o: the Office; p: Pam; r: the Scranton branch; s: Stanley; t: Toby; u: the Utica branch
Ax: x is an accountant; Bx: x is a branch; Dx: x is a drug test; Ex: x is an employee; $\mathrm{Hx}: \mathrm{x}$ is happy; Mx : x is a regional manager; Ox: x is an office; Px: x is a person; Rx: x is a raise; $\mathrm{Sx}: \mathrm{x}$ is a salesperson; Tx: x is a product
Axy: x is y 's assistant; Bxy: x is bigger than y ; Dxy: x despises y ; Fxy: x farms y ; Hxy: x has y; Ixy: x is in y; Kxy: x likes y; Lxy: x loves $y ;$ Mxy: x is smaller than $y ;$ Nxy: x is nicer than y; Pxy: x passed y; Rxy: x resides in y; Sxy: x sells $y ;$ Txy: x tolerates y; Zxy: x is lazier than y
Gxyz: x would give y to z ; Nxyz: x is nearer than y to z .
Only
6. $\mathrm{Mm} \cdot(\mathrm{x})(\mathrm{Mx} \supset \mathrm{x}=\mathrm{m})$
7. $(\exists \mathrm{x})\{\mathrm{Sx} \bullet \mathrm{Dxt} \bullet(\mathrm{y})[(\mathrm{Sy} \bullet \mathrm{Dyt}) \supset \mathrm{y}=\mathrm{x}]\}$
8. $\mathrm{Sd} \bullet \mathrm{Ido} \bullet \mathrm{Sj} \bullet \mathrm{Ijo} \bullet(\mathrm{x})[(\mathrm{Sx} \bullet \mathrm{Ixo}) \supset(\mathrm{x}=\mathrm{d} \vee \mathrm{x}=\mathrm{j})]$

Except
6. Es $\bullet \sim \mathrm{Hs} \bullet(\mathrm{x})[(\mathrm{Ex} \bullet \mathrm{x} \neq \mathrm{s}) \supset \mathrm{Hs}]$
7. $\mathrm{Pm} \bullet \mathrm{Tmn} \bullet(\mathrm{x})[(\mathrm{Px} \bullet \mathrm{x} \neq \mathrm{m}) \supset \sim \mathrm{Txn}]$
8. $\mathrm{Em} \bullet(\exists \mathrm{x})\{\mathrm{Tx} \bullet \sim \operatorname{Smx} \bullet(\mathrm{y})[(E y \bullet \mathrm{y} \neq \mathrm{m}) \supset \operatorname{Syx}]\}$

Superlatives
6. $\mathrm{Br} \cdot(\mathrm{x})[(\mathrm{Bx} \bullet \mathrm{x} \neq \mathrm{r}) \supset \mathrm{Brx}]$
7. $\mathrm{Br} \bullet \mathrm{Bu} \bullet(\mathrm{x})[(\mathrm{Bx} \bullet \mathrm{x} \neq \mathrm{u}) \supset \mathrm{Nuxs}]$
8. $(\exists \mathrm{x})\{\mathrm{Ex} \bullet \mathrm{Ixo} \bullet \mathrm{Ax} \bullet(\mathrm{y})[(\mathrm{Ay} \bullet$ Iyo $\bullet \mathrm{y} \neq \mathrm{x}) \supset \mathrm{Bxy}]\}$

At least
6. $(\exists \mathrm{x})(\exists \mathrm{y})(\mathrm{Ex} \bullet \mathrm{Ey} \bullet \mathrm{x} \neq \mathrm{y} \cdot \mathrm{Bxj} \cdot \mathrm{Byj})$
7. $(\exists \mathrm{x})(\exists \mathrm{y})(\exists \mathrm{z})(\mathrm{Ex} \bullet \mathrm{Ey} \bullet \mathrm{Ez} \bullet$ Bxj \bullet Byj • Bzj $\bullet \mathrm{x} \neq \mathrm{y} \bullet \mathrm{x} \neq \mathrm{z} \bullet \mathrm{y} \neq \mathrm{z})$
8. $(\exists \mathrm{x})(\exists \mathrm{y})(\exists \mathrm{z})(\exists \mathrm{w})(\mathrm{Ax} \bullet \mathrm{Ixo} \bullet \mathrm{Ay} \bullet \mathrm{Iyo} \bullet \mathrm{Az} \bullet \operatorname{Izo} \bullet \mathrm{Aw} \bullet \operatorname{Iwo} \bullet \mathrm{x} \neq \mathrm{y} \bullet \mathrm{x} \neq \mathrm{z} \bullet \mathrm{x} \neq \mathrm{w} \bullet \mathrm{y} \neq \mathrm{z} \bullet \mathrm{y} \neq \mathrm{w} \bullet \mathrm{z} \neq \mathrm{w})$

At most
6. (x)(y)[(Ax • Ixo • Ay • Iyo) $\supset \mathrm{x}=\mathrm{y}]$
7. $(x)(y)(z)(w)[(A x \bullet$ Ixo • Ay • Iyo •Az $\cdot \operatorname{Izo} \bullet A w \bullet I w o) ~ \supset(x=y \vee x=z \vee x=w \vee y=z \vee y=w \vee z=w)]$
8. $(\exists \mathrm{x})(\mathrm{Px} \bullet \mathrm{Kxa}) \bullet(\mathrm{x})(\mathrm{y})(\mathrm{z})[(\mathrm{Px} \bullet \mathrm{Kxa} \bullet \mathrm{Py} \bullet \mathrm{Kya} \bullet \mathrm{Pz} \bullet \mathrm{Kza}) \supset(\mathrm{x}=\mathrm{y} \vee \mathrm{x}=\mathrm{z} \vee \mathrm{y}=\mathrm{z})]$

